Normative references of fetal chest circumference in a Nigerian population

Felix Femi Akindeju1, Ademola Adeyekun2, Ayodele Olugbenga Ogunsemoyin3, Bukunmi Michael Idowu4*
1Department of Radiology, University of Medical Sciences Teaching Hospital, Akure Complex, Akure, Ondo state, Nigeria.
2Department of Radiology, College of Medical Sciences, University of Benin, Benin-City, Nigeria.
3Department of Radiology, University of Medical Sciences Teaching Hospital, Ondo Complex, Ondo, Ondo state, Nigeria.
4Department of Radiology, Union Diagnostics and Clinical Services Plc, Yaba, Lagos State, Nigeria.
*Correspondence: Dr. Bukunmi Michael Idowu; ibmcontacts@gmail.com

Download full article in pdf format

Abstract

Background: A linear relationship between gestational age and fetal thoracic size has been observed, with growth occurring at a regular rate from 16 to 40 weeks.
Objective: To determine the fetal chest circumference in normal late second and third-trimester pregnancies in a Nigerian population.
Materials and Methods: This was a descriptive cross-sectional study carried out on gravid women with normal singleton pregnancies at 22 – 38 weeks gestational age. We recruited 440 eligible gravid women. The fetal gestational age was estimated from the last menstrual period and an early first trimester ultrasound report (< 10 weeks). The fetal chest circumference was measured on an axial view of the fetal chest after ensuring adequate visualisation of the four cardiac chambers, both fetal lungs and ribs. The other fetal biometric parameters were determined using the previously established guidelines. Descriptive statistics, Pearson’s correlation, and regression analysis were used as appropriate. Statistical tests were considered significant at P ≤ 0.05.
Results: The mean age of the subjects was 29.8 ± 4.6 years (range = 18-45 years). The chest circumference of the fetuses ranged from 16.56 ± 0.29 cm to 30.87 ± 6.88 cm. The fetal chest circumferences increased with advancing gestational age (16.56 ± 0.29 cm at 22 weeks to 30.87 ± 6.88 cm at 37 weeks gestational age). There was strong positive correlation between chest circumference and menstrual gestational age (r=0.85, p=<0.0001), biparietal diameter (r=0.88, p<0.0001), abdominal circumference (r=0.90, p<0.0001) and fetal length (r=0.88, p<0.0001).
Conclusion: The fetal chest circumference grew as the pregnancy progressed. There was a positive linear correlation between fetal chest circumference and menstrual gestational age as well as the other fetal biometric parameters.

Keywords: Normative references, Fetal Chest Circumference, Sonography, Gestational Age, Fetal Biometry.

Cite this article Akindeju FF, Ademola Adeyekun AA, Ogunsemoyin AO, Idowu BM. Normative references of fetal chest circumference in a Nigerian population. Yen Med J. 2022;4(3):43–53.

REFERENCES

  1. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond). 2007;113(1):1-13. doi:10.1042/CS20060339.
  2. Goldstein R. Ultrasound Evaluation of the fetal thorax. In: Callen P, ed. Ultrasonography in Obstetrics and Gynecology. 3rd ed. W.B. Saunders; 1994:333-346.
  3. Stetzer BP, Thomas A, Amini SB, Catalano PM. Neonatal Anthropometric Measurements to Predict Birth Weight by Ultrasound. J Perinatol. 2002;22(5):397-402. doi:10.1038/sj.jp.7210754.
  4. Fong K, Ohlsson A, Zalev A. Fetal thoracic circumference: a prospective cross-sectional study with real-time ultrasound. Am J Obstet Gynecol. 1988;158(5):1154-1160. doi:10.1016/0002-9378(88)90244-x.
  5. Nimrod C, Nicholson S, Davies D, Harder J, Dodd G, Sauve R. Pulmonary hypoplasia testing in clinical obstetrics. Am J Obstet Gynecol. 1988;158(2):277-280. doi:10.1016/0002-9378(88)90137-8.
  6. Garne E, Haeusler M, Barisic I, et al. Congenital diaphragmatic hernia: evaluation of prenatal diagnosis in 20 European regions. Ultrasound Obstet Gynecol. 2002;19(4):329-333. doi:10.1046/j.1469-0705.2002.00635.x.
  7. Harrison MR, Adzick NS, Estes JM, Howell LJ. A prospective study of the outcome for fetuses with diaphragmatic hernia. JAMA. 1994;271(5):382-384.
  8. Gareth P, Seaward R. The Fetal Chest. In: Caroll M, Wilson S, Charboneau J, eds. Diagnostic Ultrasound. Vol 2. 3rd ed. Elsevier; 1998:1303-1321.
  9. Rodríguez MR, de Vega VM, Alonso RC, Arranz JC, Ten PM, Pedregosa JP. MR Imaging of Thoracic Abnormalities in the Fetus. RadioGraphics. 2012;32(7):E305-E321. doi:10.1148/rg.327125053.
  10. Ionescu C. Thoracic Anomalies. In: Tudorache S, ed. Congenital Anomalies – From the Embryo to the Neonate. InTech; 2018. doi:10.5772/intechopen.71959.
  11. Sohaey R, Zwiebel WJ. The fetal thorax: noncardiac chest anomalies. Semin Ultrasound CT MR. 1996;17(1):34-50. doi:10.1016/s0887-2171(96)90043-8.
  12. Griscom NT. Fetal Diagnosis by X Ray. In: Milunsky A, ed. Genetic Disorders and the Fetus: Diagnosis, Prevention, and Treatment. 2nd ed. Springer US; 1986:689-699. doi:10.1007/978-1-4684-5155-9_22.
  13. Bulas D, Egloff AM. Fetal chest ultrasound and magnetic resonance imaging: recent advances and current clinical applications. Radiol Clin North Am. 2011;49(5):805-823. doi:10.1016/j.rcl.2011.06.005.
  14. Hubbard AM. Ultrafast fetal MRI and prenatal diagnosis. Semin Pediatr Surg. 2003;12(3):143-153. doi:10.1016/s1055-8586(03)00031-3.
  15. Gonçalves LF, Lee W, Mody S, Shetty A, Sangi-Haghpeykar H, Romero R. Diagnostic accuracy of ultrasonography and magnetic resonance imaging for the detection of fetal anomalies: a blinded case–control study. Ultrasound Obstet Gynecol. 2016;48(2):185-192. doi:10.1002/uog.15774.
  16. Zemet R, Amdur-Zilberfarb I, Shapira M, et al. Prenatal diagnosis of congenital head, face, and neck malformations—Is complementary fetal MRI of value? Prenat Diagn. 2020;40(1):142-150. doi:10.1002/pd.5593.
  17. Pugash D, Brugger PC, Bettelheim D, Prayer D. Prenatal ultrasound and fetal MRI: The comparative value of each modality in prenatal diagnosis. Eur J Radiol. 2008;68(2):214-226. doi:10.1016/j.ejrad.2008.06.031.
  18. Abidoye IA, Ayoola OO, Idowu BM, Aderibigbe AS, Loto OM. Uterine artery Doppler velocimetry in hypertensive disorder of pregnancy in Nigeria. J Ultrason. 2017;17(71):253-258. doi:10.15557/JoU.2017.0037.
  19. Ishola A, Asaleye C, Ayoola O, Loto O, Idowu B. Reference Ranges of Fetal Cerebral Lateral Ventricle Parameters by Ultrasonography. Rev Bras Ginecol Obstet. 2016;38(09):428-435. doi:10.1055/s-0036-1593410.
  20. Ayoola OO, Bulus P, Loto OM, Idowu BM. Normogram of umbilical artery Doppler indices in singleton pregnancies in south-western Nigerian women. J Obstet Gynaecol Res. 2016;42(12):1694-1698. doi:10.1111/jog.13114.
  21. Comstock CH. Normal fetal heart axis and position. Obstet Gynecol. 1987;70(2):255-259.
  22. Daltro P, Werner H. Fetal MRI of the chest. In: Javier Lucaya A, Janet L, eds. Paediatric Chest Imaging: Chest Imaging in Infants and Children. Springer; 2008:398-399.
  23. Kurtz AB, Wapner RJ, Kurtz RJ, et al. Analysis of biparietal diameter as an accurate indicator of gestational age. J Clin Ultrasound. 1980;8(4):319-326. doi:10.1002/jcu.1870080406.
  24. Campbell S, Wilkin D. Ultrasonic measurement of fetal abdomen circumference in the estimation of fetal weight. Br J Obstet Gynaecol. 1975;82(9):689-697. doi:10.1111/j.1471-0528.1975.tb00708.x.
  25. Hadlock FP, Harrist RB, Deter RL, Park SK. A prospective evaluation of fetal femur length as a predictor of gestational age. J Ultrasound Med. 1983;2(3):111-112. doi:10.7863/jum.1983.2.3.111.
  26. Nwobi CI. Sonographic Assessment of Foetal Thoracic Circumference as a Predictor of Gestational Age in Maiduguri, North East Nigeria. Master of Science (Medical Imaging). University of Nigeria; 2012. https://tinyurl.com/4pyv6j7t.
  27. Nimrod C, Davies D, Iwanicki S, Harder J, Persaud D, Nicholson S. Ultrasound prediction of pulmonary hypoplasia. Obstet Gynecol. 1986;68(4):495-498.
  28. Chitkara U, Rosenberg J, Chervenak FA, et al. Prenatal sonographic assessment of the fetal thorax: normal values. Am J Obstet Gynecol. 1987;156(5):1069-1074. doi:10.1016/0002-9378(87)90112-8.
  29. Siddiqi TA, Meyer RA, Korfhagen J, Khoury JC, Rosenn B, Miodovnik M. A longitudinal study describing confidence limits of normal fetal cardiac, thoracic, and pulmonary dimensions from 20 to 40 weeks’ gestation. J Ultrasound Med. 1993;12(12):731-736. doi:10.7863/jum.1993.12.12.731.
  30. DeVore GR, Horenstein J, Platt LD. Fetal echocardiography. VI. Assessment of cardiothoracic disproportion–a new technique for the diagnosis of thoracic hypoplasia. Am J Obstet Gynecol. 1986;155(5):1066-1071. doi:10.1016/0002-9378(86)90351-0.
  31. Ohlsson A, Fong K, Rose T, et al. Prenatal ultrasonic prediction of autopsy-proven pulmonary hypoplasia. Am J Perinatol. 1992;9(5-6):334-337. doi:10.1055/s-2007-999258.
  32. Songster GS, Gray DL, Crane JP. Prenatal prediction of lethal pulmonary hypoplasia using ultrasonic fetal chest circumference. Obstet Gynecol. 1989;73(2):261-266.
  33. Tisekar OR, Ak AK. Hypoplastic Lung Disease. In: StatPearls. StatPearls Publishing; 2022. Available from: http://www.ncbi.nlm.nih.gov/books/NBK562139/. Accessed July 22, 2022.
  34. Winn HN, Chen M, Amon E, Leet TL, Shumway JB, Mostello D. Neonatal pulmonary hypoplasia and perinatal mortality in patients with midtrimester rupture of amniotic membranes–a critical analysis. Am J Obstet Gynecol. 2000;182(6):1638-1644. doi:10.1067/mob.2000.107435.
Scroll to Top
× Chat